172 research outputs found

    The RHIC Zero Degree Calorimeter

    Full text link
    High Energy collisions of nuclei usually lead to the emission of evaporation neutrons from both ``beam'' and ``target'' nuclei. At the RHIC heavy ion collider with 100GeV/u beam energy, evaporation neutrons diverge by less than  2~2 milliradians from the beam axis Neutral beam fragments can be detected downstream of RHIC ion collisions (and a large aperture Accelerator dipole magnet) if θ\theta\leq 4 mr but charged fragments in the same angular range are usually too close to the beam trajectory. In this 'zero degree' region produced particles and other secondaries deposit negligible energy when compared with that of beam fragmentation neutrons. The purpose of the RHIC zero degree calorimeters (ZDC's) is to detect neutrons emitted within this cone along both beam directions and measure their total energy (from which we calculate multiplicity). The ZDC coincidence of the 2 beam directions is a minimal bias selection of heavy ion collisions. This makes it useful as an event trigger and a luminosity monitor\cite{baltz} and for this reason we built identical detectors for all 4 RHIC experiments. The neutron multiplicity is also known to be correlated with event geometry \cite{appel} and will be used to measure collision centrality in mutual beam int eractions.Comment: 18 pages, 12 figure

    On-sky results of the adaptive optics MACAO for the new IR-spectrograph CRIRES at VLT

    Get PDF
    The adaptive optics MACAO has been implemented in 6 focii of the VLT observatory, in three different flavors. We present in this paper the results obtained during the commissioning of the last of these units, MACAO-CRIRES. CRIRES is a high-resolution spectrograph, which efficiency will be improved by a factor two at least for point-sources observations with a NGS brighter than R=15. During the commissioning, Strehl exceeding 60% have been observed with fair seeing conditions, and a general description of the performance of this curvature adaptive optics system is done.Comment: SPIE conference 2006, Advances in adaptive optics, 12 pages, 11 figure

    The HADES Tracking System

    Full text link
    The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in total about 30 square meter of active area. Low multiple scattering in the in total four planes of drift chambers before and after the magnetic field is ensured by using helium-based gas mixtures and aluminum cathode and field wires. First in-beam performance results are contrasted with expectations from simulations. Emphasis is placed on the energy loss information, exploring its relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on Instrumentation, Vienna, February 2004, to be published in NIM A (special issue

    Inclusive pion and eta production in p+Nb collisions at 3.5 GeV beam energy

    Get PDF
    Data on inclusive pion and eta production measured with the dielectron spectrometer HADES in the reaction p+93Nb at a kinetic beam energy of 3.5 GeV are presented. Our results, obtained with the photon conversion method, supplement the rather sparse information on neutral meson production in proton-nucleus reactions existing for this bombarding energy regime. The reconstructed e+e-e+e- transverse-momentum and rapidity distributions are confronted with transport model calculations, which account fairly well for both pi0 and eta production.Comment: 12 pages, 9 figures, submitted to Physical Review

    Searching a Dark Photon with HADES

    Get PDF
    We present a search for the e+e- decay of a hypothetical dark photon, also names U vector boson, in inclusive dielectron spectra measured by HADES in the p (3.5 GeV) + p, Nb reactions, as well as the Ar (1.756 GeV/u) + KCl reaction. An upper limit on the kinetic mixing parameter squared epsilon^{2} at 90% CL has been obtained for the mass range M(U) = 0.02 - 0.55 GeV/c2 and is compared with the present world data set. For masses 0.03 - 0.1 GeV/c^2, the limit has been lowered with respect to previous results, allowing now to exclude a large part of the parameter region favoured by the muon g-2 anomaly. Furthermore, an improved upper limit on the branching ratio of 2.3 * 10^{-6} has been set on the helicity-suppressed direct decay of the eta meson, eta-> e+e-, at 90% CL

    Inclusive Dielectron Production in Ar+KCl Collisions at 1.76 AGeV studied with HADES

    Full text link
    Results of the HADES measurement of inclusive dielectron production in Ar+KCl collisions at a kinetic beam energy of 1.76 AGeV are presented. For the first time, high mass resolution spectroscopy was performed. The invariant mass spectrum of dielectrons is compared with predictions of UrQMD and HSD transport codes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    SINFONI - Integral Field Spectroscopy at 50 milli-arcsecond resolution with the ESO VLT

    Full text link
    SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive Optics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presently tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer.Comment: This paper was published in Proc. SPIE, 4841, pp. 1548-1561 (2003), and is made available as an electronic reprint with permission of SPIE. Copyright notice added to first page of articl

    Future perspectives at SIS-100 with HADES-at-FAIR

    Full text link
    Currently, the HADES spectrometer undergoes un upgrade program to be prepared for measurements at the upcoming SIS-100 synchrotron at FAIR. We describe the current status of the HADES di-electron measurements at the SIS-18 and our future plans for SIS-100.Comment: Invited contribution presented at the XLVII International Winter Meeting on Nuclear Physics, Bormio (Italy), Jan. 26-30, 200
    corecore